71. Conformations of the Ten-membered Ring in 5, 10- Secosteroids. III¹)²): $(Z)-3B-$ and $(Z)-3a$ -Hydroxy-5, 10-seco-1 (10)-cholesten-5-one Esters and **(2)-5,lO-seco-1 (lO)-Cholestene-3,5-dione**

by **Hermann Fuhrer³), Ljubinka Lorenc⁴), Vladimir Pavlović⁴), Grety Rihs³), Günther Rist³), Jaroslav Kalvoda⁵) and Mihailo Lj. Mihailović⁴)**

(16.11.8 1)

Summary

(Z)-3 β -Acetoxy- and (Z)-3 α -acetoxy-5,10-seco-1(10)-cholesten-5-one **(6a)** and **(7a)** were synthesized by fragmentation of 3β -acetoxy-5 a-cholestan-5-ol (1) and 3α -acetoxy-5 β -cholestan-5-ol (2), respectively, using in both cases the hypoiodite reaction (the lead tetraacetate/iodine version). The 3β -acetate 6a was further transformed, via the 3 β -alcohol 6d to the corresponding (Z)-3 β -p-bromobenzoate ester **6b** and to (2)-5,10-seco-l **(lO)-cholestene-3,5-dione (8)** (also obtainable from the $3a$ -acetate **7a**). The ¹H- and ¹³C-NMR. spectra showed that the (*Z*)-unsaturated 10-membered ring in all three compounds **(6a, 7a** and **8)** exists in toluene, in only one conformation of type C_1 , the same as that of the (Z) -3 β -p-bromobenzoate **6b** in the solid state found by X-ray analysis. The unfavourable relative spatial factors (interdistance and mutual orientation) of the active centres in conformations of type C_1 are responsible for the absence of intramolecular cyclizations in the (Z) -ketoesters *6* and **7 (a** and **c),**

Introduction. - We have already reported [l] [2] the results of NMR. and X-ray studies concerning the ground-state conformations of the (E) -unsaturated 10membered ring in the epimeric (E)-3 β -acetoxy-(3a), (E)-3 β -p-bromobenzoyloxy-**(3b), and** (E) **-3a-acetoxy-5,10-seco-1 (10)-cholesten-5-ones (4a)**, and in the corresponding (E) -3,5-diketone 5. Detailed analysis of ¹H- and ¹³C-NMR. spectra showed, that the major conformations (Scheme 1) in toluene were A_i^{β} for 3a [1]⁶), **A3** for **4a** [2] and **A'f** for **5** *[2],* the first two also being the (only) conformations of **3')** and **4a** in the solid state, as established by X-ray analysis, and that the minor

¹⁾ Part I: [I]; part **II:** [2].

²) Part XVIII in the series 'Synthesis. Structure and Reactions of Secosteroids Containing a Mediumsized **Ring'.** Part **XVII: [3].**

^{3,} Central Function Research, Ciba-Geigy Ltd, **4002** Basle, Switzerland.

^{4,} Department of Chemistry, Faculty of Science, University of Belgrade, and Institute of Chemistry, Technology and Metallurgy, Studentski trg 16, POB 550, YU-11001 Belgrade, Yugoslavia.

^{5,} Research Laboratories, Pharmaceuticals Division, *Ciba-Geigy* Ltd, 4002 Basle, Switzerland.

^{6,} For **3a,** the same major and minor conformations exist also in chloroform [l].

⁷) The (E) -3 β -p-bromobenzoate **3b** was used for X-ray studies of the (E) -5,10-seco-system **3**[1].

conformations in toluene were $\mathbf{B}_{2}^{\beta 6}$), \mathbf{B}_{1}^{a} and \mathbf{A}_{2}^{k} for **3a, 4a** and **5**, respectively. Both the 3β -acetoxy- and 3α -acetoxyketones **3a** and **4a**, as well as the corresponding 3-tosylates **3c** and **4c,** undergo a variety of cyclizations involving intramolecular $C(1)-C(5)$ and $C(1)-C(3)$ bond formation, respectively, which can be accounted for by the favourable relative spatial arrangement of the reaction centres in the transition state conformations of the **A** and **B** type mentioned above (Scheme *I),* and in other similar reactive conformations of the (E) -cyclodecenone ring in these compounds $[1-3]$.

In contrast to this behaviour of the (E)-ketones **3** and **4,** the corresponding (Z) diastereomers **6** and **7** do not undergo internal ring closure under the same conditions [3-71. These results suggest an unfavourable distance and/or relative steric orientation of the $\Delta^{(1)}$ -olefinic double bond with respect to the O=C(5) group in the (Z) -3-acetates 6a and 7a, and to the $T_SO-C(3)$ group in the (Z) -3toluenesulfonate **6c** and **7c,** this being the case, for example, in conformations of type C_1 *(Scheme 2).*

We therefore examined (Z) -3 β -acetoxy-5,10-seco-1(10)-cholesten-5-one **(6a)**, (2)-3 a-acetoxy-5,lO-seco-1 (lO)-cholesten-5-0ne **(7a)** and **(Z)-5,10-seco-l(lO)-cho**lestene-3,5-dione **(8)** by 'H- and 13C-NMR. spectroscopy and circular dichroism (CD.), and (Z) -3 β -p-bromobenzoyloxy-5, 10-seco-1 (10)-cholesten-5-one **(6b)** by X-ray diffraction. in order to determine the ground-state conformation(s) in solution and in the solid state of their (Z) -unsaturated 10-membered ring.

1. Synthetic procedures. - The easily available 3β -acetoxy-5a-cholestan-5-ol (1) $[8]$ was the starting material for the synthesis of the (Z) -5,10-seco-compounds **6a, 6b** and **8** (Scheme 3). The hypoiodite reaction of **1,** using lead tetraacetate/iodine in cyclohexane, afforded (Z) -3 β -acetoxy-5,10-seco-l (10)-cholesten-5-one **(6a)** in considerably higher yield *(ca.* 54%) than the previously described lead tetraacetate oxidation of **1** [4], which gave only 15-17% of **6a** under thermolytic conditions [4] [9] and 27.5% under UV.-photolytic conditions [9]. The corresponding 3β -alcohol 6d $[4]$ was esterified to (Z) -3 β -p-bromobenzoyloxy-5, 10-seco-1 (10)-cholesten-5-one **(6b)**, required for X-ray analysis *(ca. 69%* yield from 6a). The 3β -alcohol 6d was also oxidized with chromic anhydride in pyridine to the (2)-3,5-diketone **8,** in over *85%* yield (from **6a).**

(2)-3 a-Acetoxy-5,lO-seco-1 (lO)-cholesten-5-one **(7a)** was prepared from the readily obtainable 3 a-acetoxy-5 8-cholestan-5-01(2) (Scheme *3).* The hypoiodite reaction (lead tetraacetate/iodine in cyclohexane) applied to 2 afforded about 38% of acetate **7a.** The lead tetraacetate oxidation of **2** under UV.-photolytic conditions [2], followed by careful saponification *(0.5-* 1% methanolic KOH-solution, O", 3-4 h) of the reaction mixture to alcohols **7d** and **4d** and reacetylation of the separated (2)-3 a-alcohol **7d** to acetate **7a,** required more manipulations and more time, and was less efficient. The (Z) -3 a-alcohol 7d, upon oxidation with chromic anhydride in pyridine, could be also readily converted (as the (Z) -3 β -alcohol 6d) to the (Z) -3,5diketone **8.**

2. Determination of the solid state conformation of (Z) -3 β -p-bromobenzoyloxy-**5,lO-seco-1 (lO)-cholesten-5-one (6b) by X-ray analysis.** - 2.1. *Crystal data.* Crystals

are orthorhombic, space group P_{212121} , $a=6.074$ (2), $b=13.670$ (4), $c=38.353$ (9) Å, $U = 3184 \text{ Å}^3$.

2.2. Intensity data, structure determination and refinement. **A** Picker **FACS-I** automatic diffractometer was used for data collection with MoKa radiation and graphite monochromator. The intensities of 3508 independent reflections with $0 \le 27.5^{\circ}$ were measured, of which 1348 were classified as observed with $I \ge 2\sigma(I)$.

The structure was solved by *Patterson* and *Fourier* techniques and refined by full-matrix least squares to a final R value of 0.09 1.

Atom	x/a	y/b	Z/C
C(1)	0.421(2)	0.526(1)	0.8591(3)
C(2)	0.625(2)	0.584(1)	0.8672(2)
C(3)	0.593(2)	0.684(1)	0.8865(3)
C(4)	0.382(2)	0.743(1)	0.8766(3)
C(5)	0.405(3)	0.781(1)	0.8383(3)
C(6)	0.205(2)	0.795(1)	0.8135(3)
C(7)	0.075(2)	0.696(1)	0.8054(3)
C(8)	0.188(2)	0.629(1)	0.7788(2)
C(9)	0.384(2)	0.572(1)	0.7958(3)
C(10)	0.303(2)	0.517(1)	0.8286(3)
C(11)	0.492(2)	0.497(1)	0.7688(3)
C(12)	0.544(2)	0.546(1)	0.7335(2)
C(13)	0.353(2)	0.604(1)	0.7164(2)
C(14)	0.283(2)	0.679(1)	0.7447(3)
C(15)	0.121(2)	0.749(1)	0.7257(2)
C(16)	0.238(2)	0.751(1)	0.6893(2)
C(17)	0.428(2)	0.674(1)	0.6885(3)
C(18)	0.162(2)	0.531(1)	0.7062(2)
C(19)	0.115(2)	0.447(1)	0.8280(2)
C(20)	0.463(2)	0.631(1)	0.6506(2)
C(21)	0.641(2)	0.546(1)	0.6495(2)
C(22)	0.539(2)	0.727(1)	0.6300(3)
C(23)	0.554(3)	0.696(1)	0.5913(3)
C(24)	0.582(4)	0.788(3)	0.5670(4)
C(25)	0.821(4)	0.819(3)	0.5667(4)
C(26)	0.910(4)	0.728(1)	0.5453(3)
C(27)	0.839(4)	0.905(1)	0.5402(3)
O(28)	0.596(2)	0.803(1)	0.8290(2)
O(29)	0.548(2)	0.661(1)	0.9233(2)
C(30)	0.687(3)	0.632(1)	0.9472(4)
O(31)	0.880(2)	0.633(1)	0.9386(2)
C(32)	0.583(3)	0.620(1)	0.9820(3)
C(33)	0.373(3)	0.640(1)	0.9899(3)
C(34)	0.315(2)	0.624(1)	1.0251(4)
C(35)	0.476(3)	0.580(1)	1.0483(3)
C(36)	0.686(3)	0.554(1)	1.0393(4)
C(37)	0.752(2)	0.570(1)	1.0033(3)
Br(38)	0.369(1)	0.563(0)	1.0957(0)

Table **1.** *Fractional atomic coordinates for compound* **6b**

Fig. 2. *Selected torsion angles characterizing the secosieroid skeleton of* **6b**

2.3. Results and discussion. Final atomic coordinates with their standard deviations are given in *Table 1.* The molecular structure is illustrated in *Figures I* and *2.* The bond lengths and selected transannular distances are listed in *Table* 2, whereby the estimated standard deviations from the least squares refinements lie between 0.008 \hat{A} (Br-C) and 0.02 \hat{A} (C-C). Bond angles are shown in *Table 3*, the standard angle deviations being about 1.5". *Figure 2* shows the torsion angles (") of the steroid skeleton.

The 10-membered ring in the (Z) -ester 6b has the C_1 conformation *(Fig. 1)* and 2, *Scheme* 2). Ring C adopts the normal chair conformation with an average

(a) Bond lengths			
$C(1)-C(2)$	1.51(2)	$C(14)-C(15)$	1.55(2)
$C(1)-C(10)$	1.38(2)	$C(15)-C(16)$	1.57(2)
$C(2)-C(3)$	1.57(2)	$C(16)-C(17)$	1.59(2)
$C(3)-C(4)$	1.56(2)	$C(17)-C(20)$	1.58(2)
$C(3)-O(29)$	1.47(2)	$C(20)-C(21)$	1.56(2)
$C(4)-C(5)$	1.56(2)	$C(20)-C(22)$	1.60(2)
$C(5)-C(6)$	1.55(2)	$C(22)-C(23)$	1.54(2)
$C(5)-O(28)$	1.25(2)	$C(23)-C(24)$	1.57(3)
$C(6)-C(7)$	1.59(2)	$C(24)-C(25)$	1.51(3)
$C(7)-C(8)$	1.53(2)	$C(25)-C(26)$	1.58(3)
$C(8)-C(9)$	1.56(2)	$C(25)-C(27)$	1.56(3)
$C(8)-C(14)$	1.58(2)	$O(29) - C(30)$	1.31(2)
$C(9)-C(10)$	1.55(2)	$C(30)-O(31)$	1.22(2)
$C(9)-C(11)$	1.60(2)	$C(32) - C(33)$	1.34(3)
$C(10)-C(19)$	1.49(2)	$C(32) - C(37)$	1.48(2)
$C(11)-C(12)$	1.55(2)	$C(33)-C(34)$	1.41(2)
$C(12) - C(13)$	1.55(2)	$C(34)-C(35)$	1.45(2)
$C(13)-C(14)$	1.56(2)	$C(35)-C(36)$	1.37(2)
$C(13)-C(17)$	1.51(2)	$C(35)-Br(38)$	1.94(1)
$C(13) - C(18)$	1.57(2)	$C(36)-C(37)$	1.46(2)
(b) Selected transannular distances			
$C(1)\cdots C(4)$	3.04(2)	$C(5) \cdot C(10)$	3.67(2)
$C(1) \cdot C(5)$	3.58(2)	$C(6)\cdots C(9)$	3.30(2)
$C(1)\cdots C(6)$	4.28(2)	$C(6) \cdot C(10)$	3.88(2)
$C(2)\cdots C(5)$	3.20(2)	$C(7)\cdots C(10)$	2.95(2)

Table 2. *Inieraiomic dislunces* (A) *in compound* **6b**

		HELVETICA CHIMICA ACTA - Vol. 64, Fasc. 3 (1981) - Nr. 71			709
Table 3. Intramolecular bond angles (deg.)					
$C(10)-C(1)-C(2)$	131	$C(12) - C(11) - C(9)$	112	$C(22) - C(23) - C(24)$	111
$C(1)-C(2)-C(3)$	117	$C(11) - C(12) - C(13)$	116	$C(25)-C(24)-C(23)$	109
$O(29)-C(3)-C(4)$	101	$C(17)-C(13)-C(12)$	113	$C(24)-C(25)-C(27)$	106
$O(29) - C(3) - C(2)$	106	$C(17) - C(13) - C(14)$	99	$C(24) - C(25) - C(26)$	97
$C(4)-C(3)-C(2)$	116	$C(17) - C(13) - C(18)$	117	$C(27) - C(25) - C(26)$	103
$C(5)-C(4)-C(3)$	109	$C(12)-C(13)-C(14)$	104	$C(30) - O(29) - C(3)$	128
$O(28)-C(5)-C(6)$	121	$C(12)-C(13)-C(18)$	110	$O(31) - C(30) - O(29)$	115
$O(28)-C(5)-C(4)$	115	$C(14)-C(13)-C(18)$	113	$O(31) - C(30) - C(32)$	131
$C(6)-C(5)-C(4)$	123	$C(15)-C(14)-C(13)$	105	$O(29) - C(30) - C(32)$	113
$C(5)-C(6)-C(7)$	114	$C(15)-C(14)-C(8)$	115	$C(33)-C(32)-C(37)$	129
$C(8)-C(7)-C(6)$	114	$C(13)-C(14)-C(8)$	113	$C(33)-C(32)-C(30)$	126
$C(7) - C(8) - C(9)$	111	$C(14)-C(15)-C(16)$	98	$C(37) - C(32) - C(30)$	105
$C(7)-C(8)-C(14)$	117	$C(17)-C(16)-C(15)$	110	$C(32) - C(33) - C(34)$	115
$C(9)-C(8)-C(14)$	106	$C(13)-C(17)-C(16)$	101	$C(33)-C(34)-C(35)$	119
$C(10)-C(9)-C(8)$	110	$C(13)-C(17)-C(20)$	117	$C(36)-C(35)-C(34)$	125
$C(10)-C(9)-C(11)$	110	$C(16)-C(17)-C(20)$	112	$C(36)-C(35)-Br(38)$	121
$C(8)-C(9)-C(11)$	111	$C(17)-C(20)-C(21)$	113	$C(34) - C(35) - Br(38)$	114
$C(1)-C(10)-C(19)$	118	$C(17)-C(20)-C(22)$	101	$C(35)-C(36)-C(37)$	117
$C(1)-C(10)-C(9)$	119	$C(21)-C(20)-C(22)$	113	$C(36)-C(37)-C(32)$	113
$C(19)-C(10)-C(9)$	123	$C(23)-C(22)-C(20)$	106		

Table 3. *Intramolecular bond angles* (deg.) -

torsion angle of *57".* The conformation of ring D is between a *C* (13) envelope and a C(16) half-chair, with *Romers* [11] ring parameters $\varphi_m = 54^\circ$ and $\Delta = 16^\circ$. The sidechain is in a nearly extended conformation; all torsion angles lie within $180 \pm 11^{\circ}$ or $60 + 12$ °.

3. NMR. Studies of the conformations in solution of the 10-membered ring in the (2)-secosteroids 6a, 7a and 8. - An NMR. analysis similar to that described [l] [2] was applied for the investigation of the (Z) -unsaturated 3-epimeric 3-acetoxy-5,10seco-5-ketones **6a** and **7a,** and the corresponding 3,5-dione **8.** Whereas a rough estimate of the spatial arrangement of the 10-membered ring in these compounds could be deduced from ¹³C-NMR. spectra, for finer details it was necessary to analyze 'H-NMR. data. Chemical shifts and coupling parameters of protons

Proton	Chemical shifts $(\delta)^b$ and coupling patterns ^c)		
	6а	7а	
$H-C(1)$	5.29 $(d \times d)$	$\sim 4.9^{d}$	4.98 $(d \times d)$
$H_\beta - C(2)$	\sim 2.14 ($d \times d \times d$)	2.25 $(d \times d)$	2.58 $(d \times d)$
$Ha-C(2)$	2.74 ($\sim t \times d$)	2.81 (qa)	3.47 $(d \times d)$
$H_\beta - C(3)$		\sim 4.9 ^d)	
$H_a-C(3)$	5.62 $(d \times qa)$		
$H0-C(4)$	2.90 $(d \times d)$	2.64 $(d \times d)$	3.76(d)
$Ha-C(4)$	\sim 2.14 (d \times d)	đ١	2.52(d)

Table 4. ^{*I*}H-NMR. *of selected 10-membered ring protons in compounds* 6a, 7a *and* 8^a)

^a) ¹H-NMR. spectra were recorded in (D₈) toluene at RT., at 360 MHz for compounds 6a and 7a, and at 100 MHz for compound **8** (no temperature dependence of the spectra could be detected).

b, In ppm/TMS.

c, Multiplicity: *d* doublet, *I* triplet, *qa* quadruplet.

~ ~

^d) Signal masked or ill-resolved due to overlap with other resonances.

 $H-C(1)$, $H_2-C(2)$, $H_2-C(3)$ and $H_2-C(4)$ of **6a**, 7a and 8 are listed in *Tables 4* and 5, and ^{I3}C-NMR. data for the 10-membered ring in *Table 6*. Since they exhibit only one set of temperature-independent NMR. resonances, each of the three *(Z)-*

signals in compounds $6a$, $7a$ and $8a$)				
Protons ^b)	Coupling constants J			
(coupling type) c)	$Calculatedd$)		Experimental ^c)	
		6a	7а	8
$1,19$ $(1,3$ -allyl)	\lt 1	$\lt 1$	f)	\leq 1
$1,2\beta$ (a,e)	3.6	4.7	4,78	4.6
$1, 2a$ (a, a)	11.6	11.9	$13h$)	11.5
2β , $2a$ (gem)	15.0	14.5	14.5	14.5
$2\beta, 3\beta$ (e,e)	2.0		~ 0	
2β , $3a$ (e, a)	3.6	3.6		
$2a.3\beta$ (a,a)	12.0		13.0	
$2a, 3a$ (e.a)	3.6	3.6		
3β , 4β (e, a)	3.6	÷.	3.6^{i}	
3β , 4a (e,e)	2.0		f)	
$3a.4\beta$ (a, a)	12.0	11.8		
$3a, 4a$ (a,e)	3.6	3.6		
4β , 4a (gem)	$15.0, 16.0$ (8)	16.2	16.2^{j}	18.0

Table 5. *Theoretical and experimental coupling constants* J *(in Hz) if selected I0-membered ring proton*

^a) *Table 4*, footnote a).

For the coupling patterns (and chemical shifts) of the protons discussed, see data in *Table 4.*

 c $a, e = \alpha x$ ial-equatorial; $a, a = \alpha x$ ial; $e, e = \alpha y$ equatorial-equatorial; $\alpha e = \alpha y$ equind.

 \mathbf{d}_1 Calculated according to *Karplus* rule [12] for conformation C_1 *(Scheme 2)*.

 e) Most constants were obtained from signals of both protons involved in coupling (for exceptions see footnotes g , h , i) and j).

 \mathbf{r} These signals are masked (or ill-resolved) owing to overlap with other resonances.

Obtained only from the signal of $H_{\beta}-C(2)$ at 2.25 ppm *(Table 4)*, and not from that of $H-C(1)$ *f*). g_{\parallel}

 \vec{b} Obtained only from the signal of $H_a-C(2)$ at 2.81 ppm *(Table 4)*, and not from that of $H-C(1)f$).

iy. Obtained only from the signal of $H_g-C(4)$ at 2.64 ppm *(Table 4)*, and not from that of $H_g-C(3)^f$.

j). Obtained only from the signal of H_{β} -C(4) at 2.64 ppm *(Table 4)*, and not from that of H_{α} -C(4)^f).

Carbon	6a	7а	8	
C(1)	120.4	121.7	119.6	
C(2)	28.6	30.7	42.2	
C(3)	70.6	70.7	201.5	
C(4)	40.7	42.3	52.0	
C(5)	210.5 209.2		207.7	
C(6)	39.6	40.6	40.0	
C(7)	27.5	27.5	27.2	
C(8)	36.8	37.0	37,0	
C(9)	41.7	41.1	41.7	
C(10)	142.5	141.9	143.8	
C(14)	50.3	50.9	50.5	
C(18)	12.0	12.1	12.0	
C(19)	18.8	18.9	18.8	

Table 6. *'.3C-NMR. chemicalshifta)* of *selected carbon atoms in compounds* **6a, 7a** *and* Sb)

^a) In ppm/TMS.

b, Spectra measured in (Dg) toluene at RT. at 25.2 **MHz.**

seco-ketones **(6a, 7a** and **8)** must exist in solution in only one (stable) ground-state conformation.

3.1. (Z) -3 β -Acetoxy-5,10-seco-5-ketone **6a**. The NMR. parameters support conformation C_1 in solution *(Scheme 2).*

¹H-NMR. Spectrum. The 3 β -acetoxy group is equatorial, since the proton at $C(3)$ shows only one resolved major coupling (\sim 12 Hz) with an adjacent proton $H_{\beta}-C(4)$, and three smaller vicinal couplings, with $H_{\alpha}-C(4)$, $H_{\beta}-C(2)$ and $H_a-C(2)$, of approximately the same magnitude (\sim 3.5 Hz), and therefore must be axial.

The coupling parameters of the $H-C(1)$ resonance suggest a dihedral angle of 180° between H-C(1) and H_a-C(2), and of 60° between H-C(1) and H_B-C(2). The signal of the vinyl proton in **6a** is shifted downfield, from 4.9 ppm in the *(Z)-* 3 **a-acetoxy-5,1O-seco-5-ketone 7a** (see below), to 5.3 ppm (in **6a),** probably owing to the deshielding influence of the 3β -acetoxy group on the proton at C(1) in **6a**.

I3C-NMR. Spectrum. The 13C-data for **6a** are in accordance with a spatial arrangement of the 10-membered ring in which the $C(1), C(2)$ - and $C(6), C(7)$ bonds are roughly parallel to the direction of the $C(9)-H_a$ bond, since only in that relative steric relationship the two γ effects, due to the C(2)-H_a and C(6)-H_a bonds⁸) [13], can cause an overall upfield movement of the $C(9)$ signal of about 13-14 ppm, *i.e.* from \sim 55 ppm in corresponding compounds where such or similar effects are absent (for example in the (E)-secosteroids **3a, 4a** and **5** with conformations A_1^{β} , B_1^{α} and A_1^{α} respectively, *Scheme 1*, [21⁹)) to 41.7 ppm in 6a. A marked double-shielding y-gauche effect influences similarly the *C* (9) signal in 5β -steroids [13 b] [16], the upfield shift of this resonance being usually in the range 12-14.5 ppm with respect to the same signal (at about 54-55 ppm) in the corresponding 5a-steroids [13b] [14-16]. A y-gauche effect, due to the $C(6)$ -H_a bond, is probably also responsible for the upfield shift of about 5-7 ppm exhibited by the resonance of C (14) (50.3 ppm) in **6a** (and also in **7a** and **8,** 50.9 and 50.5 ppm respectively), as compared to the value in the (E)-secoketones **3a, 4a** and **5** (ca. 56.5 pprn), and in normal steroid compounds (55-57 ppm), where this effect is inexistent [14-16].

The 13C(19) nucleus in **6a** resonates at about 19 ppm, and the same value is also observed for the C(19) signal of the other two (Z)-secosteroids **7a** and **8.** This signal is situated downfield when compared to the $C(19)$ resonance (at 12.5–12.8 ppm) of the corresponding (E) -diastereoisomers **3a, 4a** and **5** in conformations **3a**-A₁, 4a-B^{*n*}; and $5-A_i$ where the 19-methyl group is β -oriented *(Scheme 1)* [2]. Since in the conformation C_1 (Scheme 2), established for the (Z) -seco-ketones 6a, 7a and 8 (see below), the 19-methyl group is also located on the β -side of the steroid skeleton and suffers the same two γ -gauche effects from the steroid ring C, the observed difference in the C(19) chemical shift must be due to the *y-cis* effect *(cis-* $C(19)-C(10)=C(1)-C(2)$ [13a] [13b], which is present only in the (E) -ketones mentioned above $(3a-A_1^{\beta}, 4a-B_1^{\alpha})$ and $5-A_1^{\alpha}$ and which, as the result of the shielding

^{8,} One effect being of the y-cis type, $C(9)$ - $C(10)=C(1)$ - $C(2)$ [13a] [13b], and the other of the *y-gauche* type, C(9)-C(8)-C(7)-C(6) [13b] [13c].

^{9,} And also in normal 5a-steroid compounds **[13b]** [14] [15].

interaction of the C(2)-H_g bond with the CH₃(19) group, causes an upfield shift of the C(19) signal in the three (E)-compounds with the 19 β -methyl group¹⁰).

3.2. *(2)-3 a-Acetoxy-5,1O-seco-5-ketone* **7a.** The NMR. spectra of this compound closely resemble those of the (Z) -3 β -epimer 6a and also suggest conformation C_1 in solution for the 10-membered ring (Scheme 2).

 $^lH\text{-}NMR$. Spectrum. Contrary to 6a, in the epimer 7a the 3u-acetoxy group is axial, since the signal of H–C(3) shows a large coupling (\sim 13 Hz) with H_a–C(2) and must therefore be equatorial, with a dihedral angle of about 180" between $H_{\beta}-C(3)$ and $H_{\alpha}-C(2)$. Unfortunately, the $H_{\beta}-C(3)$ signal (at ~4.9 ppm) was not resolved owing to overlap with the resonance of the vinyl proton at $C(1)$, so its fine structure could not be assessed even at 360 MHz. The $H_g-C(4)$ signal appears at 2.64 ppm as a doublet of doublets (16.2 Hz and 3.6 Hz), indicating a dihedral angle of about 60° between $H_{\beta}-C(4)$ and $H_{\beta}-C(3)$. These and other features of the ¹H-NMR. spectrum of **7a** show that the spatial arrangement of $C(1)$, $C(2)$, $C(3)$ and C(4) must be very similar to that in the 3β -epimer **6a.**

 13 C-NMR. Spectrum. There are no significant differences in the ¹³C-NMR. spectra of **6a** and **7a** (Table **5),** and the discussion above for **6a** is also valid for the 3 u-epimer **7a.**

3.3. *(2)-5,1O-seco-5-diketone* **8.** The 'H-NMR. and 13C-NMR. parameters again suggest C_1 as the sole conformation (in solution) of the (Z) -unsaturated 10membered ring in the diketone **8** (Scheme 2).

 $H-NMR$. Spectrum. The H-C(1) resonance at 4.98 ppm shows the same coupling pattern as the corresponding signals in compounds **6a** and **7a,** and therefore the dihedral angles of H-C(1) with $H_β-C(2)$ and $H_α-C(2)$ must be very similar in all three (Z) -secocompounds, *i.e.* about 60 $^{\circ}$ and 180 $^{\circ}$. Since the resonances assigned to H_{β} –C(4) and H_{α} –C(4) appear as an AB pattern at 3.76 and 2.52 ppm, respectively, it follows that the 4β -proton is in the deshielding and the 4a-proton in the shielding zone of the 5-carbonyl group.

I3C-NMR. Spectrum. The chemical shifts of the relevant **13C** nuclei C (9), C (14) and C(19) in **8** are very similar to the values observed for these carbon atoms in compounds $6a$ and $7a$. This indicates that the spatial arrangement of the (Z) -unsaturated 10-membered ring is alike in all three (Z)-secosteroids, and, therefore, that in the diketone 8 the bonds $C(1)-C(2)$ and $C(6)-C(7)$ are again roughly parallel to the direction of the $C(9)-H_a$ bond.

4. Discussion. - On the basis of this NMR. analysis we conclude that in toluene the three (Z)-unsaturated 5,10-seco-5-ketones **6a, 7a** and **8** have one and the same conformation of the 10-membered ring, of type C_1 (Scheme 2), which corresponds to the solid state conformation, determined by X-ray analysis of the p -bromobenzoate ester **6b** (see Section 2). The (2)-acetates **6a** and **7a** differ only in the relative spatial

¹⁰) In conformations \mathbf{B}_2^{β} , \mathbf{A}_2^{α} and \mathbf{A}_2^{α} of the (*E*)-compounds **3a, 4a** and **5** *(Scheme 1)*, the 19-methyl group is a-oriented and (in contrast to the 19 β -methyl group in the above discussed (E)-conformations $3a-Af$, $4a-Bf$ and $5-Af$ *(Scheme 1),* and the (Z)-conformation C_1 of $6a$, $7a$ and 8 *(Scheme 2))* is not subjected to the *y-gauche* effect of the C(8)-H_{β} and C(11)-H_{β} bonds or any other C-H bonds in ring *C.* Therefore, in spite of the still present *y-cis* effect, the C(19) resonance in these (E)-conformations with the 19a-methyl group is deshielded and shifted downfield. appearing at 19-19.5 ppm **[2].**

orientation of the 3-acetoxy group, which is equatorial in the 3β -ester 6a and axial in the 3*a*-epimer $7a^{11}$). That the conformation of the (Z)-unsaturated 10-membered ring is very similar or the same in the 3-acetates **6a** and **7a,** and, hence, does not depend on the β - or a-configuration of the 3-acetoxy group (contrary to the corresponding compounds of the (E) -series *(Scheme 1)* [1] [2]), is also supported by the CD. measurements of **6a** and **7a,** both compounds exhibiting a positive *Cotton* effect. Conformation C_1 of the (Z) -unsaturated 10-membered cyclodecenone ring in secocompounds **6** and **7** *(Scheme 2),* which is of the same type as the conformation of (Z) -cyclodecene determined by X-ray analysis of its crystalline $AgNO₃$ adduct $[17]^{12}$, was postulated in our previous studies for the following reasons.

(i) The large distance between the keto-carbonyl C(5) and the $\Delta^{1(10)}$ -olefinic double bond (over 3.5 A; see *Table 2)* accounts for the non-formation of transannular $C(5)$, $C(1)$ - and/or $C(5)$, $C(10)$ -bonds in various reactions of the (Z) -3acetoxy-5-ketones $6a$ and $7a$ $[3-7]^{13}$). The same reactions, however, in the case of the corresponding (E)-diastereoisomeric ketoacetates **3 a** and **4a,** because of the suitable transannular $C(5) \cdots C(1)$ proximity *(Scheme 1)* [1] [2], do bring about internal ring closure (under acid-catalyzed [2] [4] [18], thermal [4] [18] and UV. [5] [20] conditions, and thermal conditions of oximes of **3a** and **4a** [6]).

(ii) The unfavourable stereoelectronic relationship between the orbital system at C(3) with its leaving tosyloxy group and the π -system of the $\Lambda^{(10)}$ -double bond in conformation C_1 *(Scheme 2)* should and does prevent intramolecular $C(1)$ – $C(3)$ bond formation in the solvolysis of the (Z) -3-toluene sulfonates **6c** and **7c** $[3]$ $[7]$ ¹³). In contrast, in the corresponding (E)-diastereoisomeric esters **3c** and **4c** the stereoelectronic situation¹⁴) is appropriate for solvolysis (departure of the 3-toluenesulfonate anion) with internal 1,3-cyclopropane ring closure [3] [7].

(iii) The fact that both the sodium borohydride and lithium aluminium hydride reductions of the (Z) -3 β -acetoxy-5-ketone **6a** and the corresponding (Z) -3 β hydroxy-5-ketone 6d afford mixtures of 5S $(5a-OH)^{15}$ and 5R $(5\beta-OH)$ 3-alcohols *(ca.* 4:1) [19], is consistent with the steric features of the (Z) -conformation C_1^{β} . Inspection of molecular models reveals that this conformation *(Scheme 2)* allows approach of the reducing agent to the keto-carbonyl $C(5)$ atom from both sides¹⁵). but that, because of the presence of rings C and D, attack from the β -side to give the alcohol with the 5S $(5 a \cdot OH)$ configuration, should be preferred.

The authors from Yugoslavia are grateful to the *Serbian Academy of Sciences and Arts* and to the *Serbian Republic Research Fund* for financial support.

The situation **is** different in the corresponding (E)-secoesters **3a** and **4a,** where it was established that the 3-acetoxy group is always equatorial, regardless of its β - or a-configuration *(Scheme 1)* [1] $[2]$.

¹²) Conformations of the C_1 type are closely related to the stable conformation of cyclodecane [17].

 13) Conceivable reactive (Z)-conformations in which such intramolecular cyclizations could be expected **[4] [19],** are associated with large steric *(I)* strain, and are therefore not attainable under the conditions of the reactions studied.

 14) In conformations $3c-B_2$ and $4c-B_1$ *(Scheme 1).*

¹⁵) In general, the terms 'a' and ' β ' (denoting orientation of substituents or side of approach of a reagent) in the 10-membered ring of 5.10-secosteroids (e.g. in conformation C_1) are formally defined with respect to the spatial position of the angular methyl C(18)-atom when the 10-membered ring has the hypothetical planar conformation, the side of the ring opposite to that in which $CH₃(18)$ is located being called 'a', and the same side *'p'.*

Experimental Part¹⁶)

Silica **gel** 0.05-0.20 was used for preparative column chromatography. The separation of products was controlled by TLC. on silica gel G (Stahl) using benzene/ethyl acetate 9:1, 7:3 or 1:1 for development and 50% aqueous sulfuric acid for detection.

Melting points (m.p.) are not corrected. Optical rotations were measured at 20° in CHCl₃. IR. spectra were determined on a Perkin-Elmerinstrument, Model 337 **(Gmax** cm-I). Noise decoupled I3C-NMR. spectra were recorded at 25.2 MHz on a Varian XL-100 spectrometer equipped with a Fourier transform accessory. IH-NMR. spectra were measured at 100 MHz on the same apparatus and at 360 MHz on a Bruker HX-360 spectrometer. Deuterions of the deuteriated solvents $((D₈)$ toluene and CDCl₃) were used for a 15.4 MHz ²H-lock during ¹³C-work. Routine ¹H-NMR. spectra were recorded at 100 MHz on a Varian HD-100 spectrometer in CDC1 $_3$ or at 60 MHz on a *Varian* A-60A spectrometer in CC1₄, at RT., using TMS as internal standard; chemical shifts are expressed in ppm $(\delta \text{ scale})$.

(Z)-3ß-Acetoxy-5,10-seco-I(10)-cholesten-5-one **(6a)**. A mixture of 3β -acetoxy-5a-cholestan-5-ol **(1)** [8] (2.23 g, 0.005 mol), dry lead tetraacetate (10.2 g, 0.023 mol) and **12** (2.0 g, 0.008 mol) in dry cyclohexane (400 ml) was stirred and irradiated for 2 h without heating with a 500 W tungsten lamp placed in a central water- and air-cooled jacket. It was then filtered, washed with 10% aqueous $Na₂S₂O₃$ solution, aqueous NaHCO₃-solution and water, dried (Na_2SO_4) and evaporated *in vacuo*, to give a mixture which was chromatographed on silica gel (60 g). Benzene eluted 1.20 g (54%) of (Z)-3 β -acetoxy-5.10-seco-1 (lO)-cholesten-5-one **(6a),** which was recrystallized from acetone/MeOH (976 mg, 44%), m.p. 138". Further elution with benzene/ether 98-96:2-4 and then 90-80.10-20, afforded 266 mg (12%) of (E) -3 β -acetoxy-5, 10-seco-1(10)-cholesten-5-one **(3a)** [4], its 1,5-cyclization product (111 mg, 5%) [4] [18], and starting alcohol **1** (245 mg, 11%).

(Z)-3/~'-p-Bromobenzoyloxy-5,lO-seco-l (IO)-cholesten-5-one **(6b).** Saponification of **6a** (3 **11** mg, 0.7 mmol) to **(Z)-3/1-hydroxy-5,10-seco-l** (lO)-cholesten-5-one **(6d)** (231 mg. 82%), m.p. 116-1 18" (from MeOH) [4], was effected with 5% methanolic KOH-solution [4]. **A** mixture of alcohol **6d** (201 mg, 0.5 mmol) and p-bromobenzoyl chloride (220 mg, I mmol) in dry pyridine (10 ml) was allowed to stand at RT. in the dark until complete consumption of the substrate **6** (about 48 h). It was then poured into ice-cold water (20 ml). acidified with diluted aqueous HCI-solution 1: 1 and extracted with ether. The ethereal layer was washed with water, aqueous NaHCO3-solution and water, dried (Na_2SO_4) and evaporated in vacuo. The solid residue was recrystallized from light petroleum (b.p. 40 60°) to give 246 mg (84%) of (Z) -3 β -p-bromobenzoyloxy-5,10-seco-1(10)-cholesten-5-one **(6b)**, m.p. 168°; $[a]_D$ $= +70^{\circ}$ (c= 1.0). - IR. (KBr): 1720, 1692, 1584, 1270. - ¹H-NMR.: 0.71 **(s, H₃C(18))**; 0.89 *(d, H₃C(26)*, $H_3C(27)$, $H_3C(21)$; 1.75 $(s, H_3C(19))^{17}$; 5.10-5.80 (br. m, H-C(1), H-C(3)); 7.58 $(d, J=9$ Hz, 2 aromatic H ortho to $-COO$); 7.90 *(d, J* = 9 Hz, 2 aromatic H ortho to $-Br$).

$C_{34}H_{49}BrO_3 (585.64)$ Calc. C 69.72 H 8.31% Found C 69.48 H 8.24%

 (Z) -3a-Acetoxy-5,10-seco-1(10)-cholesten-5-one (7a) and (Z) -3a-hydroxy-5,10-seco-1(10)-cholesten-*5-one* (7d). A mixture of $3a$ -acetoxy-5 β -cholestan-5-ol (2) [10] (2.0 g, 0.0045 mol), dry lead tetraacetate (8.0 g, 0.018 mol) and **12** (1.5 g, 0.006 mol) in dry cyclohexane (400 ml) was stirred and irradiated for 2 h (without heating) with a 500 W tungsten lamp contained in a central water- and air-cooled jacket. The precipitate was removed by filtration, and the filtrate washed with aqueous $Na_2S_2O_3$ -solution, aqueous NaHC03-solution and water, dried (MgS04) and evaporated *in vucuo,* to give a mixture which was chromatographed on silica gel (60 8). Elution with benzene/ether 99: **1** afforded a mixture (1.45 g, 72.4%) of the diastereoisomeric *(Z)-* and (E)-3u-acetoxy-seco-kctones **7a** and **4a,** froin which, after several recrystallizations from acetone/MeOH, 760 mg (38%) of pure **7a** [3] was obtained, m.p. 129-130"; $[a]_D = +17^\circ$ (c = 1.0). - IR. (KBr): 1728, 1705, 1265. - ¹H-NMR.: 0.68 (s, H₃C(18)); 0.87 (d, H₃C(26), H₃C(27)); 0.91 (d, H₃C(21)); 1.64 (s, H₃C(19))¹⁷); 2.06 (s, AcO); 4.8-5.2 (m, H-C(1), H-C(3)).

 $C_{29}H_{48}O_3$ (444.67) Calc. C 78.32 H 10.88% Found C 78.18 H 10.81%

A solution of **7a** (200 mg, 0.45 mmol) in 0.5% methanolic KOH-solution (30 ml) was stirred 2.5 h at 0"; then diluted with water and extracted with ether. The organic layer was washed with water until

¹⁶⁾ IR. and routine 'H-NMR. (at 60 MHz) spectral measurements were performed in the Laboratories for Instrumental Analysis (directed by Prof. *D. Jeremić*), and elemental microanalyses in the Microanalytical Laboratory (Dr. *R. Tasovac)* of the Department of Chemistry, Faculty of Science, Belgrade.

¹⁷) This signal of H₃C-C(19) which is attached to the olefinic C(10) is actually a singlet-like multiplet (d), because of small vinyl and allyl couplings $(J \sim 0.5-1 \text{ Hz})$ with $H-C(1)$ and $2 H-C(2)$ [4].

neutral, dried (MgS04) and evaporated *in vucuo.* The residue was chromatographed on silica gel (8 g). Elution with benzene/ether 80:20 afforded 7d [3] (152 mg, 84%), m.p. 116° after several crystallizations from acetone (100 mg, 55%); $[a]_{D} = -14^{\circ}$ ($c = 0.8$). - IR. (KBr): 3498, 3440, 1680. - ¹H-NMR.: 0.71 $(s, H_3C(18))$; 0.88 *(d,* H₃C(26), H₃C(27)); 0.93 *(d,* H₃C(21)); 1.64 $(s, H_3C(19))$ ¹⁷), ~ 3.7 (br. *m,* H-C(3)); \sim 5.1 *(m, H-C(1))*.

$C_{27}H_{46}O_2$ (402.64) Calc. C 80.54 H 11.52% Found C 80.63 H 11.61%

 (Z) -5,10-seco-1(10)-Cholesten-3,5-dione **(8).** A solution of (Z) -3 β -hydroxy-5,10-seco-1(10)cholesten-5-one **(6d)** [4] (201 mg, *0.5* mol) or its 3a-epimer **7d** (see above) in dry pyridine (2.5 ml) was added to a slurry of $CrO₃$ (200 mg, 2 mmol) in dry pyridine (2 ml). The mixture was allowed to stand 24 h at RT., and was then diluted with ether and filtered. The filtrate was washed with water, dilute acetic acid, aqueous NaHCO₃-solution and water, and dried (MgSO₄). Removal of the solvent *in vacuo* afforded 193 mg (96%) of **8** [3], m.p. 128° (from acetone); $[a]_D = +320^\circ$ ($c = 1.0$). - IR. (KBr): 1735, 1720, 1705. - IH-NMR.: 0.73 *(s,* H3C(18)); 0.87 *(d.* H3C(26), H3C(27)); 0.90 *(d,* H3C(21)); 1.74 $(s, H_3C(19))^{17}$; 5.20 $(m, H-C(1))$.

 $C_{27}H_{44}O_2$ (400.62) Calc. C 80.94 H 11.07% Found C 80.88 H 11.20%

REFERENCES

- [1] *H.-C. Mez, G. Rist, O. Ermer, Lj. Lorenc, J. Kalvoda & M. Lj. Mihailović, Helv. Chim. Acta 59,* 1273 (1976).
- [2] *H. Fuhrer, Lj. Lorenc, V. PuvloviC. G. Rihs, G. Rist, J. Kulvoda* & *M. Lj. Mihailovit,* Helv. Chim. Acta *62,* 1770 (1979).
- [3] *Lj. Lorenc, M. J. GuiiC, I. JuruniC, M. Dabovit* & *M. Lj. Mihailovi?,* J. Chem. Soc. Perkin **I1** *1980,* 1356.
- [4] *M. Lj. Mihailovit, Lj. Lorenc, M. GaJiC, M. RogiC, A. Meleru* & *M. Stefanovi?,* Tetrahedron *22,* 2345 (1966).
- [5] *M. Lj. Mihailovit, Lj. Lorenc, N. Popov* & *J. Kalvodu,* Helv. Chim. Acta 54, 2281 (1971).
- [6] *M. Lj. MihuiloviC, Lj. Lorenc, Z. MaksimoviC* & *J. Kulvoda,* Tetrahedron *29,* 2683 (1973).
- **(71** *Lj. Lorenc, M. 1. GuX I. Juranit, M. Dabovi?* & *M. Lj. Mihailovi?,* Tetrahedron Lett. 1974, 395.
- [S] *PI. A. Pluttner, Th. Petrzilku* & *W. Lung,* Helv. Chim. Acta *31,* 1833 (1948); ibid. *27,* 513 (1944); *M. Lj. Mihailovi?, Lj. Lorenc, V. Pavlovit* & *J. Kalvoda,* Tetrahedron *33,* 441 (1977).
- 191 *Lj. Lorenc, Z. Muksimovii., R. Boiinov, J. Kalvodu* & *M. Lj. MihuiloviC,* unpublished results.
- [lo] *PI. A. Plattner. H. Heusser* & *A. B. Kulkurni,* Helv. Chim. Acta *31,* 1822, 1885 (1948); ibid. *32,* 265 (1949).
- [111 *C. A ltona, H. J. Geise* & *C. Romers,* Tetrahedron *24,* 13 (1968).
- 1121 See, for example, *E. W. Gurbisch.* J. Am. Chem. *SOC.* 86, 5561 (1964); *E. Becker,* 'High Resolution NMR, Academic Press, New York, N.Y. 1969, p. 104.
- [I31 a) *P.A. Couperus, A.D.H. Clugue* & *J.P.C.M. van Dongen, Org.* Magn. Reson. 8, 426 (1976); b) *N.K. Wilson & J.B. Stothers*, in 'Topics in Stereochemistry', Vol. 8, Eds. E.L. Eliel & N.L. Allinger, Wiley-Interscience, New York-London 1974, pp. 25-54, and ref. therein; c) *F. W. Wehrli* & *T. Wirthlin,* 'Interpretation of Carbon-13 NMR Spectra', Heyden & Son, London-New **York** 1976, pp. 22-45, and ref. therein.
- [14] *H. J. Reich, M. Juurelur, M. T. Messe, F. J. Weigert* & *J. D. Roberts,* J. Am. Chem. Soc. *91,* 7445 (1969); *H. Eggert,* C. *L. VanAntwerp, N. S. Bhacca* & *C. Djerassi,* J. *Org.* Chem. *41,* 71 (1976).
- [I51 *J. W. Blunt* & *J. B. Stothers, Org.* Magn. Reson. *9,* 439 (1977). and ref. therein; *W.B. Smith,* in 'Annual Reports on NMR. Spectroscopy', Vol. 8, Ed. G.A. Webb, Academic Press, New **York,** N.Y. 1978, pp. 199-226, and ref. therein.
- [161 *J. L. Cough, J. P. Guthrie* & *J. B. Stothers,* Chem. Commun. *1972,* 979; *D. Leibfritz* & *J. D. Roberts,* J. Am. Chem. Soc. 95, 4996 (1973).
- [I71 *J.D. Dunitz,* in 'Perspectives in Structural Chemistry', Vol. 2, Eds. J.D. Dunitz & J.A. Ibers, Wiley, New York-London 1968, pp. 54-62; *0. Ermer,* Ph. *D.* Thesis (No. 4465), ETH, Zurich 1970; *J. D. Dunitz,* Pure Appl. Chem. *25,* 495 (1971).
- (181 *M. Lj. Mihuilovik. Lj. Lorenc, 1. For;ek, H. Neiovi?, G. Snatzke* & *P. Triku,* Tetrahedron *26,* ⁵⁵⁷ (1970).
- 1191 *M. Lj. Mihailovi?. M.J. Gaii?, I. Juranit* & *Lj. Lorenc,* Bull. SOC. Chim. Beograd *36,* 401 (1971).
- 1201 *M. Lj. Mihailovit. Lj. Lorenc, V. PuvloviC* & *J. Kulvoda,* Tetrahedron *33.* 441 (1977).